Germline Variation Disrupting Developmental Mechanisms Predisposes to Early Childhood Cancer

Todd E. Druley, M.D., Ph.D.
Assistant Professor of Pediatrics, Developmental Biology and Genetics
Division of Hematology and Oncology
Center for Genome Sciences and Systems Biology

http://druleylab.wustl.edu
@DruleyLab
In compliance with ACCME policy, WU requires the following disclosures to the session audience:

<table>
<thead>
<tr>
<th>Role</th>
<th>Disclosures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Support/P.I.</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Employee</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Consultant</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Major Stockholder</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Speakers’ Bureau</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Scientific Advisory Board</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
</tbody>
</table>
Definitions in this talk

- **Mutation** = a change to your DNA sequence after birth (somatic)

- **Variant/Variation** = a germline (inherited or de novo) change in your DNA sequence compared to the human reference.
Pediatric Tumorigenesis

• Why do children get cancer?

• Pediatric cancer incidence can’t be explained by:

1. High-penetrance “cancer-causing” genes (TP53, APC, etc.)
 • Typically don’t develop cancer until 20's or after

2. Somatic mutation/environmental exposure
 • Requires 2-8 critical mutations for malignant transformation

3. Chromosomal rearrangements
 • Found in healthy people
 • Frequently fail to transform in model systems
Very few mutations in pediatric cancer

- Cancer genomes have an average of 2-8 “driver” mutations.
- Children’s cancers have the fewest somatic mutations.
- Many are immature cell types with defects in developmental mechanisms.

From Vogelstein et al., Science 339; 2013
Bimodal onset of pediatric cancers: pre-school and puberty

Chmielecki et al, Cancer Res 2017; 77(2)
Hypotheses:

1. Pediatric cancer is primarily a developmental defect.

2. Thus, children get cancer partially due to \textit{germline} profiles of rare, damaging variants?
Hypothesis: Children get cancer because of inherited profiles of rare, damaging variants?

<table>
<thead>
<tr>
<th>If your full sibling has ALL</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you are not twins</td>
<td>7.07</td>
</tr>
<tr>
<td>If you are twins</td>
<td>137.61</td>
</tr>
</tbody>
</table>

Hemminki & Jiang, *Leukemia* 2002; **16**: 297
Pediatric cancer incidence is increasing.

- Better detection??
- Due to “modern” environmental exposures??

Ages < 20 years

Cancer sites include invasive cases only unless otherwise noted. Rates are per 100,000 and are age-adjusted to the 2000 US Std Population (19 age groups – Census P25-1130). Regression lines are calculated using the Joinpoint Regression Program Version 4.0.3, April 2013, National Cancer Institute. Incidence source: SEER 9 areas (San Francisco, Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, and Atlanta).
Figure 1 | Feasibility of identifying genetic variants by risk-allele frequency and strength of genetic effect (odds ratio). Reproduced, with permission, from Nature REF. 10 © (2009) Macmillan Publishers Ltd. All rights reserved. GWA, genome-wide association.

Effect size and rare variation

Figure 1 | Feasibility of identifying genetic variants by risk-allele frequency and strength of genetic effect (odds ratio). Reproduced, with permission, from Nature REF. 10 © (2009) Macmillan Publishers Ltd. All rights reserved. GWA, genome-wide association.

8.5% of pediatric cancer patients have germline variants in KNOWN cancer predisposition genes
Cancer predisposition may be more common than we think?

- 29% of >300 pediatric cancer survivors met criteria for a cancer predisposition syndrome.
 - Family history, cancer type, medical history, other conditions
 - Compared to only ~5% for adult cancer survivors

- Including deceased children, ~33% of children with cancer have a predisposition.
Schematic model for genetic and epigenetic variation in cancer as a function of age.
Hypothesis: *Inherited* profiles of rare, damaging variants predispose to IL.

- **Infant leukemia (IL)**
 - >50% of infants (<1 year old) who get leukemia die from disease
 - Survivors often left with lifelong developmental problems
 - ~66% have a translocation in the *MLL* gene
 - H3K4 histone methyltransferase, controls gene transcription
 - >100 identified fusion partners
 - *MLL*-rearrangements rarely induce short latency leukemia *in vitro*
 - No common environmental exposures during pregnancy or infancy identified
Very few somatic mutations in MLL-positive ALL

The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias

1.3 non-silent somatic mutations per genome
The largest case-control study of infant leukemia to date.

- Julie Ross, PhD, Logan Spector, PhD & Amy Linabery, PhD;
- Univ of Minnesota

GERMLINE DNA from infants that developed IL.

Exome/Genome Sequencing

- 114 germline exomes from IL patients
- 20 germline genomes from PCGP IL patients
- 30 germline exomes from healthy children
- 40 germline genomes from 1000 Genomes
- All compared to the ExAC database
Prioritize variants most likely to have a functional impact

1. RARE or NOVEL
 - Found at <1% variant allele frequency in the ExAC database

2. NON-SYNONYMOUS
 - Alter the coding sequence of the resulting protein
Highly significant enrichment

• Used the COSMIC database to identify candidate genes somatically mutated in ALL and AML
 – 126 genes for ALL
 – 655 genes for AML

• Is the observed variation higher in these genes?

http://www.sanger.ac.uk/genetics/CGP/cosmic/
• **MLL1** & **MLL2** are orthologous to drosophila *Trithorax* (*Trx*)
• **MLL3** & **MLL4** are orthologous to *Trithorax-related* (*Trr*)

• COMPASS complexes regulate gene expression during early development
 – H3K4 tri-methylation at promoter sites (on/off)
 – H3K4 mono-methylation at enhancer sites (high/low)
 – Ubiquitination of H2A & H2B – targets and function UNCLEAR!
What are COMPASS complexes?

MLL1 & MLL2 complexes function via:
- retinoic acid receptors at the nuclear membrane
- histone modifications

MLL3 & MLL4 complexes function via:
- retinoic acid receptors at the nuclear membrane
- histone modifications

“Histone crosstalk” refers to a regulatory cascade dependent upon proper modifications of histones.

Adapted from Hu et al 2013
MLL3 and MLL2 are significant pan-cancer genes

Current directions – functional understanding

1. Reprogramming patient fibroblasts/BECs to iPSCs

- Cannot effectively replicate all of this variation in a single animal or cell line
- Acknowledge that variation outside the COMPASS family may be critical for IL etiology
- We have 7 validated clones from 4 patients and 2 clones from one unaffected pediatric control
Pediatric Cancer Predisposition Clinic

- Joint clinic between Heme/Onc, Genetics, GI, Radiology, Endocrinology and Neurology
 [http://www.stlouischildrens.org/our-services/cancer-predisposition-program]

- We offer comprehensive clinical and research services:
 - Genetic counseling
 - Occupational, Physical & Speech Therapy
 - School liaison
 - Research platform:
 - DNA banking
 - Longitudinal phenotype data
 - hiPSC bank
Birth defects and cancer risk:

- Relative Risk increase of 1.4 – 6.0 during childhood depending upon the type of birth defect and cancer.