Significant Research Advances

Washington University School of Medicine researchers at Siteman Cancer Center have pioneered important advances in cancer research, prevention, education and treatment. Highlights and ongoing studies include:

2022 — Immunity-boosting treatment enhances CAR-T cell therapy for blood cancers

  • A study by researchers at Washington University School of Medicine shows that additional treatment with an immunity boosting protein called interleukin 7 (IL-7) after an infusion of these genetically modified T cells causes the cancer-fighting CAR-T cells to grow in number and become more effective at killing tumor cells.

2021 — Colorectal cancer and making pancreatic cancer cells more susceptible to treatment

  • A study led by Washington University School of Medicine has found a link between drinking sugar-sweetened beverages and an increased risk of developing colorectal cancer in women under age 50. The findings suggest that heavy consumption of sugary drinks during adolescence (ages 13 to 18) and adulthood can increase the disease risk.
  • Washington University researchers found that a liquid biopsy examining blood or urine can help gauge the effectiveness of therapy for colorectal cancer that has just begun to spread beyond the original tumor. Such a biopsy can detect lingering disease and could serve as a guide for deciding whether a patient should undergo further treatments due to some tumor cells evading an initial attempt to eradicate the cancer.
  • A study in mice from Washington University School of Medicine suggests that blocking a major inflammatory pathway that is activated in pancreatic cancer makes the tumors sensitive to chemotherapy and a type of immunotherapy that prompts the immune system’s T cells to attack the cancer cells. The therapy more than doubled survival in a mouse model of pancreatic cancer.
  • Washington University researchers have identified a drug compound that makes pancreatic cancer cells more vulnerable to chemotherapy. Studying mice, they found evidence suggesting that the drug also may reduce some of the damaging side effects of the chemotherapy cocktail FOLFIRINOX (a combination of folinic acid, 5-fluorouracil, irinotecan and oxaliplatin), commonly used to treat pancreatic cancer.

2020 — Advances in immunotherapy

  • A study in mice by Washington University researchers has shown that the effects of a standard immunotherapy drug can be enhanced by blocking the protein TREM2, resulting in complete elimination of tumors. The findings point to a potential new way to unlock the power of immunotherapy for more cancer patients.
  • A team of researchers at Washington University School of Medicine have combined two immunotherapy strategies into a single therapy and found, in studies in human cells and in mice, that the two together are more effective than either alone in treating certain blood cancers, such as leukemia. Evidence also suggests that the new approach could be safer than one of the most recent cellular immunotherapies to be approved by the FDA, called CAR-T cell therapy, in which the immune system’s T cells are engineered to target tumor cells.
  • A study from Washington University School of Medicine suggests that the age of certain immune cells used in such therapy plays a role in how effective the immunotherapy is. These cells — natural killer (NK) cells — appear to be more effective the earlier they are in development, opening the door to the possibility of an immunotherapy that would not utilize cells from the patient or a matched donor. Instead, they could be developed from existing supplies of what are called human pluripotent stem cells.

2019 — Improving brain cancer survival

  • A team of researchers led by Washington University School of Medicine has identified distinct molecular signatures of glioblastoma in men and women that help explain why more males get this type of brain cancer and generally have lower survival rates than females. The research suggests that tailoring treatments to men and women with glioblastoma based on the molecular subtypes of their tumors may improve survival for all patients.
  • By examining brain tumors in mice, Washington University researchers discovered that immune cells that should be defending the body against disease sometimes can be enticed into providing aid and comfort to tumor cells instead. The more immune cells a tumor can recruit to its side, the faster the tumor grows, the researchers found.

2018 — Personalized brain cancer vaccines

  • In a clinical trial to test the effectiveness of a glioblastoma vaccine, some patients “lived significantly longer” – up to seven years longer – than most people who are diagnosed with the brain cancer. Washington University researchers, including Jian Campian, MD, PhD, developed personalized vaccines for each patient, removing as much of the brain tumor as possible, then combining pieces of the tumor with cells from the patient’s immune system. This “trains” the immune cells to attack tumor cells.

2017 — CAR T-cell therapy and using Zika virus to fight brain cancer

  • In a clinical trial at Siteman, Washington University researchers found that 80 percent of people with an aggressive form of lymphoma went into remission after receiving CAR-T cell immunotherapy. The patients had previously failed standard therapies. CAR-T cell therapy, which uses a patient’s own immune system to attack cancer cells, has since been approved by the Food and Drug Administration to treat certain types of advanced non-Hodgkin lymphoma. Siteman is one of the first centers nationwide to offer the newly approved therapy, called Yescarta.
  • While Zika virus causes devastating damage to the brains of developing fetuses, it one day may be an effective treatment for glioblastoma, a deadly form of brain cancer. Joint research from Washington University School of Medicine and the University of California San Diego School of Medicine shows that in mice the virus kills brain cancer stem cells, the kind of cells most resistant to standard treatments.

2016 — Chemotherapy for brain tumors and cancer gene predicts treatment response 

  • Using a laser probe, neurosurgeons open the brain’s protective cover, enabling them to deliver chemotherapy drugs to patients with glioblastoma – the most common and aggressive type of brain cancer. The patients underwent minimally invasive laser surgery to treat a recurrence of their tumors. Heat from the laser is known to kill brain tumor cells but, unexpectedly, the researchers found that the technology can penetrate the blood-brain barrier, keeping it open for four to six weeks and providing a therapeutic window of opportunity to deliver chemotherapy drugs.
  • Washington University researcher Timothy Ley, M.D., and colleagues found that patients with the most lethal form of acute myeloid leukemia (AML) – based on genetic profiles of their cancers – appear to live longer if they receive a relatively mild chemotherapy drug. Treatment with the less intensive drug, decitabine, is not a cure. But surprisingly, AML patients whose leukemia cells carried mutations in a nefarious cancer gene called TP53 consistently achieved remission after treatment with decitabine. Their median survival was just over a year, compared to four to six months with more aggressive treatment.

2015 — Melanoma vaccine and urine test for kidney cancer

  • Personalized melanoma vaccines can be used to marshal a powerful immune response against unique mutations in patients’ tumors, according to early data in a first-in-people clinical trial. The new approach merges cancer genomics with cancer immunotherapy. Earlier attempts at vaccines have focused on targeting normal proteins commonly expressed at high levels in particular cancers. Those same proteins also are found in healthy cells, making it difficult to stimulate a potent immune response.
  • Researchers develop a noninvasive method to screen for kidney cancer that involves measuring the presence of proteins in the urine. The scientists found that the protein biomarkers are more than 95 percent accurate in identifying early-stage kidney cancers. In addition, there were no false positives caused by non-cancerous kidney disease.

2014 — Breast cancer, lung cancer and intraoperative cancer imaging

  • A breast cancer vaccine developed at Washington University School of Medicine is safe in patients with metastatic breast cancer, results of an early clinical trial indicate. Preliminary evidence also suggests that the vaccine primed the patients’ immune systems to attack tumor cells and helped slow the cancer’s progression.
  • A study involving lung cancer patients shows that current approaches to genome analysis systematically miss detecting a certain type of complex mutation in tumors. Further, a significant percentage of these complex mutations are found in well-known cancer genes that could be targeted by existing drugs, potentially expanding the number of cancer patients who may benefit.
  • Goggles developed at Washington University School of Medicine help surgeons visualize cancer cells, which glow blue when viewed through the eyewear. The goggles system, which incorporates custom video technology, a head-mounted display and a targeted molecular agent that attaches to cancer cells, helps to ensure that no stray tumor cells are left behind during surgery.

2013 — Endometrial cancer and leukemia

  • In separate studies, researchers at Washington University School of Medicine and The McDonnell Genome Institute help identify major genetic mutations that promote endometrial cancer and acute myeloid leukemia. The research, part of The Cancer Genome Atlas project, provides new information that could change treatments for patients and aid drug development.

2012 — Leukemia, breast cancer research and cancer prevention

  • Siteman leukemia doctor Lukas Wartman, MD, who was diagnosed with the disease himself, goes into remission for an unprecedented third time after Timothy Ley, MD, and his colleagues at The Genome Institute sequenced Wartman’s cancerous and normal genes. Researchers also analyzed his RNA. By doing so, his treatment team, which includes John DiPersio, MD, PhD, deputy director of Siteman, discovered that a normal gene might be contributing to the growth of Wartman’s cancer by producing mass amounts of a certain protein. They found that a drug used to treat a type of kidney cancer was able to inhibit the gene.
  • Scientists use whole genome sequencing to compare differences between the DNA of breast cancer tumors and healthy cells in 46 women. While revealing the complexity of the disease, the analysis suggests routes to personalized medicine that may have a greater probability of healing patients.
  • Building on his research for the Nurses Health Study and Growing Up Today Study, Graham Colditz, MD, DrPH, continues to examine links between cancer and alcohol use, diet, exercise and other factors and what individuals and communities can do to reduce disease risk. In a 2012 paper, Colditz argues that half of all cancer cases can be prevented, thereby saving more than 280,000 people in 2011, and that individuals, medical and health experts, government officials and others must start taking already known steps to reduce cancer’s impact.

2011 — Blood-related cancers

  • Siteman completes its 5,000th hematopoietic stem cell transplantation, a common therapy for patients with blood-related cancers such as leukemia, lymphoma, and multiple myeloma or another blood-related cancer.

2010 — Pediatric cancers

  • Washington University School of Medicine and St. Jude Children’s Research Hospital announce their joint Pediatric Cancer Genome Project to identify the genetic changes that give rise to some of the world’s deadliest childhood cancers. The team plans to decode the genomes of more than 600 childhood cancer patients who have contributed tumor samples.

2008 — Genetic sequencing

  • For the first time, scientists decode all the genes of a cancer patient and find a suite of mutations that might have caused the disease or aided its progression. Timothy Ley, MD, Elaine Mardis, PhD, Richard K. Wilson, PhD, and their colleagues at The McDonnell Genome Institute say the finding could lead to new therapies and could help doctors make better choices among existing treatments, based on a more detailed genetic picture of each patient’s cancer. Though the research involved acute myelogenous leukemia (AML), the same techniques can also be used to study other cancers.

2007 — Nanotechnology and radiation therapy

  • Gregory Lanza, MD, Ph.D., Samuel Wickline, MD, and researchers in their labs announce the development of nanoparticles, significantly smaller than the width of a human hair, aimed at attacking cancer by locating and “latching on” to tumors. Used in conjunction with magnetic resonance imaging, the nanoparticles could help physicians monitor cancerous tissue and deliver medicine directly to the tumor, not to the rest of the body.
  • Researchers led by Daniel Low, MD, and Parag Parikh, MD, develop a machine called the 4D Phantom that follows a patient’s complex breathing pattern to deliver radiation therapy to tumors that move, such as those in the lung.

2006 — Photoacoustic imaging

  • Lihong Wang, PhD, announces his work on photoacoustic imaging, a new technique that uses light and sound to create detailed, color pictures of tumors and organs. The noninvasive imaging technique, which can be performed without the dangers of radiation exposure associated with X-ray and CT scans, also may help doctors detect cancer earlier than ever before, its developers say.

2003 — Breast cancer

  • Thalachallour Mohanakumar, PhD, and other researchers at Siteman develop and test on mice a prototype vaccine that causes cancerous tumors to stop growing, then to shrink. The vaccine, which is being developed to fight breast cancer in humans, helps the immune system target a protein found in 80 percent of breast tumors. 

2001 — Imaging and the immune system’s role in controlling cancer

  • Research led by Joanne Mortimer, MD, shows that positron emission tomography (PET) scans can often identify within two weeks which women with advanced breast cancer are likely to respond to hormone therapy, a gentler alternative to chemotherapy that is usually just as effective.
  • Robert D. Schreiber, PhD, and colleagues publish the first evidence that the immune system plays a role in controlling cancer, a process called immunosurveillance. In 2007, they find in mice that some cancers are kept in a state of “equilibrium,” which leads them to suggest that one day immunotherapy may convert cancer into a chronic but controllable disease.
  • Molecular oncologist Howard McLeod announces research on a genetic mutation that affects how well patients will respond to chemotherapy. The findings may make possible a blood test that would determine what dose, or even which drugs, would be most effective for each patient.

1998 — Biopsies

  • Ralph G. Dacey Jr., MD, performs the world’s first magnetic stereotactic surgery to biopsy a human brain tumor using an indirect route to the tumor. The route is designed to avoid regions that would normally be entered when a surgeon manually inserts a surgical tool straight at a site. The investigational computerized system allows surgeons to carefully manipulate surgical tools inside the brain through the use of a catheter driven by precisely controlled magnetic fields.

1994 — Genetic screening test for thyroid cancer

  • Led in part by Helen Donis-Keller, PhD, researchers for the first time develop genetic screening tests that detect a rare, lethal form of thyroid cancer in the preclinical state, permitting early treatment in children predisposed to the disease. It was the first surgical prevention of cancer based on genetic test results. 

1979 — Bone marrow transplants

  • As part of a clinical trial, leukemia patients at Washington University in St. Louis and four other medical centers receive transplants of their healthy bone marrow cells to determine how effective the procedure is in conjunction with chemotherapy and radiation treatment. The new technique would later be called autologous hematopoietic stem cell transplantation.

Mid-1970s — Imaging

  • Michel Ter-Pogossian, PhD, leads the research that will turn the PET scanner from an intriguing concept to a medical imaging technique used by hospitals and laboratories everywhere to scan the working brain.

1954 — Growth factors and cancer

  • Rita Levi-Montalcini, PhD, and Stanley Cohen, PhD, isolate for the first time nerve growth factor, a potent substance that promotes nerve cell growth. The discovery later leads to insights into cancer and birth defects, and in 1986 the two are awarded a Nobel Prize for their work.

1946 — Radiocarbon in cancer research

  • For the first time, the United States Department of War releases carbon-14 isotopes to a civilian entity, Siteman’s predecessor institutions, Barnard Free Skin and Cancer Hospital (founded in 1905) and the Mallinckrodt Institute of Radiology (founded in 1923), where they are used in cancer studies.

1941 — Cyclotron

  • At the Mallinckrodt Institute of Radiology, construction begins on the first cyclotron devoted to medical and biological research.

1933 — Lung cancer surgery and the disease’s link to smoking

  • Evarts Ambrose Graham, MD, becomes the first surgeon to cure a human case of lung cancer by removing an entire lung during a procedure known as pneumonectomy. In 1950, he and Ernst Wynder, MD, publish the results of the first large-scale research on smoking, linking prolonged cigarette use to lung cancer.